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INTRODUCTION 
Nitric oxide synthases (NOSs) are a family of 
enzymes that catalyze the production of nitric 
oxide (NO) from L-arginine. NOS is one of the 
most regulated enzymes in biology. There are 
three known isoforms, two are constitutive 
(cNOS) and the third is inducible (iNOS). Cloning 
of NOS enzymes indicates that, cNOS include 
both brain constitutive (NOS1) and endothelial 
constitutive (NOS3), the third is the inducible 
(NOS2) gene 1. Studies have shown that 
production of NO by iNOS is implicated in a 
variety of acute and chronic inflammatory 
diseases (e.g., sepsis, septic shock, vascular 
dysfunction in diabetes, asthma, arthritis, 
multiple sclerosis, and inflammatory diseases of 
the gut) 2. NOS inhibition may be promising for 
the treatment of anaphylactic shock, however, 
the failure of a phase III trial of some inhibitors 
such as L-NMMA in septic shock, indicates that 

other approaches need to be pursued for the 
successful treatment of septic shock. High hopes 
have been placed on selective iNOS inhibitors as 
one of the possible remedies for this condition 3. 
A combination of selective iNOS inhibition and β 
adrenergic agonists, such as isoprenaline, in 
treatment of endotoxic shock has been reported 
to have beneficial effects 4. 

Development of new iNOS inhibitors as novel 
chemotherapeutics directed against acute and 
chronic inflammatory diseases. Here, we report 
the QSAR studies of 2-Imidazol-1-ylpyridine 
derivatives as inhibitors of iNOS, and we include 
some QSAR parameters of the structure-activity 
relationship. In view of iNOS inhibitors and their 
toxicities we decided to perform optimization of 
existing leads using sophisticated computer 
aided drug design technique like QSAR. 
Quantitative structure activity relationship 
provides the guidelines for making structural 
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ABSTRACT    
Global physicochemical descriptor based QSAR models were developed using multiple linear 
regression (MLR), partial least squares (PLS) and feed forward neural network (FFNN) 
techniques for a set of 71 molecules as NOS Inhibitor belonging to 2-Imidazol-1-ylpyridine 
derivatives synthesized against acute and chronic inflammatory diseases. Leave out one row 
method is used to validate the developed model. The MLR and PLS generated excellent models 
with good predictive ability and all the statistical values, such as r, r2, r2cv, r2 ( test set), F and S 
values were 0.88, 0.78, 0.76, 0.73, 40.42 and 0.26 for MLR and r2cv, r2 (test set)  and statistical 
significance value were 0.75, 0.70 and 0.99 for PLS respectively, were satisfactory. The model 
developed from feed forward neural network (FFNN) technique also showed good correlation 
value of r2= 0.87. The results obtained from this study provide insights regarding role of Dipole 
moment Z component (whole molecule), Total Lipole (whole molecule), Number of H-bond 
acceptors (whole molecule) and VAMP polarization XY (whole molecule) in determining the NOS 
inhibitory activity.  
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changes in the compound so that drugs of higher 
potency can be obtained. A successful QSAR 
model generates statistically significant 
relationships between chemical structure and 
biological activity 1.  
In the present paper, we describe our attempt to 
investigate the relationship between the various 
physiochemical parameters and anti-
inflammatory activity of 2-Imidazol-1-ylpyridine 
derivatives that may be helpful in development of 
potent anti-inflammatory agents. The present 
study has been performed employing equation 
based techniques and Comparison of the 
performance of developed multivariate 
regression models with FFNN in order to obtain 
robust model with least possibilities of over fitting 
and chance correlation. 
The focus of the present work is the analysis of 
important physiochemical descriptors and 
structural contribution at level of atoms and 
groups that will further help in the design of more 
potent iNOS inhibitors. 
 
MATERIAL AND METHODS 
The structures and anti-cancer activities of 71 
compounds of 2-Imidazol-1-ylpyridine 
derivatives5 (Table 1) were sketched using Chem 
Draw software and were imported on TSAR 
(Version 3.3; Accelrys Inc, oxford, England) 
software. The generated 3D models of all 
derivatives created were cleaned up and 
subjected to charge calculation and energy 
minimization.  
More than 300 molecular descriptors were 
calculated for all the compounds under 
consideration. TSAR affords the calculation of 
the following descriptors: atomic attributes (like 
molecular properties, dipole moment and verloop 
steric parameters), atomic indices (like shape, 
connectivity and topological indices) and Vamp 
electrostatic properties (total energy, HOMO, 
LUMO, heat of formation, etc) 6. To reduce data 
redundancy, pairwise correlation analysis was 
carried out 7. Among the highly intercorrelated 
descriptors the one that had high correlation with 
biological activity was kept and other was 
discarded. This process was repeated number of 
times and finally five descriptors were retrieved 
that were highly correlated with biological activity 
and were not having intercorrelation among each 
other.  
 
Model Development 
Linear Regression Analysis 
To develop QSAR models, stepwise MLR 
analysis with leave-one-out (LOO) 8 cross-

validation was applied to the training set. The 
molecules of the series were divided randomly 
into training set (55 molecules) and test set (16 
molecules) with descriptors retrived by data 
reduction. Training set was used to build linear 
models so that an accurate relationship could be 
found between structure and biological activity 9. 
The test set of six molecules was not used to 
develop the regression model but served to 
check the predictive power of the developed 
model. In addition to MLR, partial least squares 
(PLS) 10 analyses were also performed to check 
the predictive ability and robustness of the 
developed model.  
 
Neural Network Analysis 
FFNN is a layered system of processing units 
that are interconnected to facilitate the ordered 
transfer and data processing. It is reported that 
sometimes FFNN is superior to MLR in providing 
accurate predictions. By definition, MLR 
assumes a linear relationship between binding 
affinities and molecular descriptors, or 
incorporated explicitly 11.  In contrast, FFNN 
makes no assumption about the linearity of a 
problem. The major advantage of FFNN lies in 
the fact that QSAR can be developed without 
having to specify the analytical form of a 
particular correlation model. 
In this work, the neurons were arranged in a 
three-layered forward feed neural network 
model: an input layer (molecular descriptor 
values used in the final MLR and PLS models), a 
hidden layer, and an output layer (antagonistic 
activity). The Monte Carlo algorithm was used to 
select a better set of starting weights within the 
default constrained limits. The ratio () between 
the number of input variables and the number of 
hidden neurons, which is critical to the predictive 
power of the FFNN, was set to close to 2 to 
prevent the problems of overfitting or memorizing 
data. To display the dependency of each 
molecular descriptor (in a qualitative manner), a 
constant value was fed into all input nodes, 
except for the molecular descriptor in question, 
which was varied over a range of 0.1-1.0. An 
initial weighting value of 1.0 was applied to all 
connections. Starting weights in the range of -
0.03 to +0.03 and -1 to +1 for the initial node 
biases were selected. The FFNN architecture 
was set to 4-2-1.  The results were visualized on 
a 2D plot of output node against input 
(dependency graph).  
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RESULT AND DISCUSSION 
Linear Regression Analysis 
Multiple linear regression (MLR) and partial least 
squares (PLS) were used to derive the QSAR 
equations. The statistically significant model was 
constructed from the training set by using 4 
parameters.  

In order to improve the predictivity of the model, 
6 potential outliers namely 11d (r), 11c, 11v, 12q, 
19f (s) and 12y (which exhibited high residual 
value and were two far away from regression 
line) were identified and deleted. 
The final regression equation obtained from MLR 
analysis (final 49 molecules in training set) after 
deleting the outliers is represented as equation 1

 
Y = -0.169 × X1 - 0.200 × X2 + 0.496 × X3 + 0.077 × X4 - 2.66           –Equation 1 

 
Where X1= Dipole moment Z component (whole 
molecule), X2= Total Lipole (whole molecule), 
X3= Number of H-bond acceptors (whole 
molecule) and X4= VAMP polarization XY (whole 
molecule). 
This best model was selected on the basis of 
various statistical parameters such as coefficient 
of determination (r2),  predictive power of model 
(r2

cv ) standard deviation (SD), sequential Fisher 
test (F) and test for statistical significance (t). 
The value of r2

 
should always be greater than 0.6 

(a good model should have an r2
 
> 0.9) and the 

value of r2
cv

 
could fall into three categories 12:  

 • r2
cv

 
> 0.6: The model is fairly good.  

 • 0.4 < r2
cv

 
< 0.6: The model is 

questionable.  
 • r2

cv

 
< 0.4: The model is poor.  

 r = 0.88, r2 = 0.78, r2
cv = 0.76, F = 40.42, S = 

0.26 and predictive r2 for test set = 0.73 
PLS analysis was also performed on the same 
data set to check the soundness of the MLR 
model. The resulted r2

cv value of 0.75 clearly 
demonstrates the high predictive ability of the 
developed PLS model (equation 2).  

 
Y = -0.154 × X1- 0.226 × X2+ 0.444 × X3+ 0.076 × X4- 2.18                -Equation 2 

 
Where X1= Dipole moment Z component (whole 
molecule), X2= Total Lipole (whole molecule), 
X3= Number of H-bond acceptors (whole 
molecule) and X4= VAMP polarization XY (whole 
molecule) 
Statistical significance = 0.99, r2

cv = 0.75, 
Fraction of variance explained = 0.77, Predictive 
r2 for test set = 0.70 
Since for a well defined problem, both MLR and 
PLS should generate comparable results13, the 
r2

cv values of MLR and the PLS models were 
evaluated and it was found that both the models 
have comparable r2

cv value of 0.75 and 0.75 for 
MLR and PLS respectively. The predictive ability 
of the model was also validated using the 
external test set of 16 compounds in context of 
minimum difference between the actual and 
predicted biological activity values of MLR and 
PLS analysis for training and test which is shown 
in table 2, 3 and their respective plots are 
depicted in figure 1, 2, 3 and 4. 
 
Feed forward neural network analysis 
The neural network models were used to study 
the type of relationships between the molecular 
descriptors and biological data. The results of 
present study reveal that both the techniques 
can be used with greater efficiency to develop 
predictive models, though the data under 

consideration can vary the statistics of the 
developed model. The best RMS fit obtained for 
the model is 0.0588 at 988 cycles. The predictive 
power was judged from the plot of predicted 
versus experimental affinities of training and test 
set of compounds for model illustrated in figure 
5-6. The results were visualized on a 2D plot of 
output node against input. In present study a 
three layered neural network has been used. 
The input descriptors were the same as used for 
multivariate regression (MLR and PLS). A close 
correlation coefficients for training & test set 
were given by the trained neural network 
architecture (r2

training=0.87 and r2
test=0.64). The 

dependency plots obtained in FFNN through 
TSAR software are given in figure: 7-10. The 
actual and predicted biological activity values of 
FFNN analysis for training and test which is 
shown in table 2, 3. The close analysis of all the 
plots reveals that the relationship between 
biological activity and four descriptors is linear 
and analogous to MLR and PLS analysis.    
 
Analysis of Descriptors 
The Dipole descriptor is a 3D electronic 
descriptor that indicates the strength and 
orientation behavior of a molecule in an 
electrostatic field. Both the magnitude and the 
components (X, Y and Z) of the dipole moment 
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are calculated. It is estimated by utilizing partial 
atomic charges and atomic coordinates. Dipole 
properties have been correlated to long range 
ligand-receptor recognition and subsequent 
binding. Dipole moment Z component (Whole 
molecule) is negatively correlated with the 
biological activity in linear analysis. Dependency 
plot of neural network analysis also shows 
negative correlation (figure 7). So with decrease 
in dipole moment of molecule there will be 
increase in biological activity.  
Lipophilicity is defined by the partitioning of a 
compound between an aqueous and a 
nonaqueous phase. P is defined as the ratio of 
substance concentrations in the organic and 
aqueous phases of a two-compartment system 
under equilibrium conditions. Total lipole (Whole 
molecule) is negatively correlated with the 
biological activity. Dependency plot of neural 
network analysis also shows negative correlation 
(figure 8). So with decrease in total lipole of 

molecule there will be increase in biological 
activity.  
The number of Hydrogen bond acceptors is 
structural descriptors. This descriptor calculates 
the number of hydrogen bond acceptors. The 
number of Hydrogen bond acceptors is positively 
correlated biological activity, so with increase in 
number of Hydrogen bond acceptors there will 
be increase in biological activity. The 
dependency plot of neural network of Hydrogen 
bond acceptors also shows positive correlation 
with biological activity (figure 9).  
VAMP polarization Descriptors, the semi-
emperical quantum mechanics engine, provides 
energy, orbitals (HOMO/LUMO), multipoles etc. 
VAMP polarization XY (Whole molecule) is 
positively correlated biological activity, so with 
increase in VAMP polarization there will be 
increase in biological activity. The dependency 
plot of neural network of VAMP polarization also 
shows positive correlation with biological activity 
(figure 10). 

 

Table 1: Structure and biological activity data of 2-Imidazol-1-ylpyrimidine analogues 

Z

Y

X

N N
H

O

O

O

N
N

                

Comp. Name R2 IC50 
Values 

Comp. Name R2 IC50 
Values 

11a COCH3  
1 11n COCH2OBn

 
0.50 

11b CH2Ph
 

1 11o CO-2-furan  
0.67 

11c COPh  
0.5 11p CO2Ph

 
1.4 

11d COOCH3  
0.38 11q COOBn  

0.8 

11e CONHCH3  
1 11r (CH2)2CHMe2  

1.0 

11f SO2CH3  
0.7 11s COOiPr  

1.0 

11g H  
0.55 11t 6-F-2-pyridine  

0.28 

11h CH3  
0.48 11u CH2COOEt

 
0.93 

11i CH2-1-naphthalene
 

69 11v C(=NH)Me  
33 

11j CONHPh  
0.87 11w dansyl  

1.1 
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Z

Y

X

N N
H

O

O

O

N
N

 

Comp. Name X Y Z IC50 Values 
15 N  CH  N  

52 

16 CH  N  N  
10 

17 CH  CH  CH  
77 

      

N

N

N N
H

R

N
N

O

 

Comp. Name R IC50 
Values 

Comp. 
Name 

R IC50 
Values 

12a CH2-benzodioxolane
 

0.5 12k CH2Ph-4-CH3  
23 

12b CH2Ph-4-OCH3  
0.8 12l CH2Ph-4-NH2  

270 

12c CH2Ph-3-OCH3  
3.7 12n CH2Ph-4-N(CH3)2  

66 

12d CH2Ph-2-OCH3  
283 12o CH2Ph-4-CF3  

150 

12e CH2Ph-3,4-OCH3  
1.5 12q CH2Ph-4-NO2  

168 

12g CH2Ph
 

25 12s CH2Ph-4-SO2CH3  
17 

12h CH2Ph-4-Cl
 

5.7 12t CH2-2-furan
 

63 

12i CH2Ph-4-F
 

3.0 12u CH2-2-pyridine
 

539 

12j CH2Ph-4-OCF3  
19 12v (NCH3)CH2Ph

 
885 

12w CHPh2  
1805 12bb (CH2)2Ph-3,4-OCH3  

12 

12y 2-benzimidazole  
11 12cc (CH2)2Ph-4-OCH3  

3.5 

12aa Ph-3,4-OCH3  
66    

N

N

N N
H

O

O

O

N
N

R3
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Comp. Name R3 IC50 Values Comp. Name R3 IC50 Values 
18a Cl  

0.49 18d CF3  
180 

18b Ph  
67 18e imidazole 35 

18c Me  
4.1    

N

N

N

N
O

O

N
N

H3C

H
N

O

R2

 

Comp. 
Name 

R2 IC50 Values Comp. Name R2 IC50 
Values 

19a H  
100 19g CO2CH3  

5.4 

19b CH3  
12 (S)-11d - 0.24 

19c Bn  
25 (R)-11d - 34 

19d SO2CH3  
12 (R)-19f - 0.75 

19e Ac  
8.5 (S)-19F - 300 

19f COCH(CH3)2  
1.9    

 

N

N

N
N

R3

N

O

N
H

O

O

     

N

N

N
N

R3

N
O

O

OH
N

 

20                                                                   21 

Comp. Name R3 IC50 Values 
20a H  

0.28 

20b Me  
0.12 

20c Et  
0.13 

21a H  
0.48 

21b Me  
0.29 

21c Et  
0.52 
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Table 2: Actual and predicted activity of training set obtained by MLR, PLS and FFNN  
Comp. Name Actual activity Predicted activity 

MLR PLS FFNN 
11f 0.154 -0.133 -0.388 -0.279 
11h 0.318 0.363 0.477 0.376 
11i -1.83 -1.831 -2.028 -2.088 
11j 0.060 0.008 0.089 0.004 
11k 0.017 -0.919 -0.946 -0.744 
11l -0.431 0.174 0.086 -0.033 

11m 0.236 0.647 0.659 0.451 
11n 0.301 0.403 0.262 0.133 
11o 0.173 0.659 0.542 0.398 
11p -0.146 -0.286 -0.433 -0.232 
11q 0.096 -0.646 -0.755 -0.300 
11r 0 0.170 0.242 0.119 
11s 0 -0.354 -0.312 -0.076 
11t 0.552 0.083 0.080 0.595 
11u 0.031 0.698 0.707 0.097 
11w -0.041 0.512 0.554 -0.062 
12a 0.301 -0.272 -0.241 -0.184 

12aa -1.819 -1.07 -1.085 -1.458 
12b 0.096 -0.731 -0.626 -1.000 

12bb -1.079 -0.549 -0.598 -0.788 
12c -0.568 -0.447 -0.318 -0.542 
12cc -0.544 -0.824 -0.758 -0.386 
12d -2.451 -1.523 -1.441 -2.065 
12k -1.361 -1.36 -1.236 -1.597 
12l -2.43 -2.93 -2.683 -2.412 
12n -1.819 -1.465 -1.367 -1.658 
12o -2.176 -2.615 -2.576 -2.794 
12s -1.230 -1.842 -1.852 -2.391 
12t -1.799 -0.931 -0.844 -1.234 
12u -2.731 -2.308 -2.25 -2.575 
12v -2.946 -2.679 -2.61 -2.709 
12w -3.256 -2.399 -2.509 -3.084 
15 -1.716 -1.245 -1.118 -1.475 
16 -1 -0.555 -0.504 -0.726 
17 -1.886 -2.062 -1.946 -2.202 
18c -0.612 -0.926 -0.906 -1.276 
18d -2.25 -2.083 -2.218 -2.885 
18e -1.54 -1.335 -1.405 -1.469 
19a -2 -1.34 -1.393 -1.415 
19b -1.07 -1.370 -1.389 -1.305 
19c -1.39 -1.347 -1.220 -1.249 
19d -1.07 -1.54 -1.762 -0.988 
19e -0.929 -1.267 -1.387 -0.859 
19f -0.278 -0.631 -0.675 -0.493 
19g -0.732 -0.572 -0.791 -0.479 
20a 0.552 -0.127 -0.096 0.457 
20b 0.920 0.042 0.078 0.574 
21a 0.318 0.094 0.156 0.384 
21b 0.537 0.181 0.241 0.423 

 
Table 3: Actual and predicted activity of test set obtained by MLR, PLS and FFNN  

Comp. Name Actual activity Predicted activity 
MLR PLS FFNN 

11a 0 -0.459 -0.380 -0.144 
11b 0 -0.904 -0.980 -0.794 
11d 0.420 0.222 0.295 0.104 
11e 0 -0.821 -1.010 -0.805 
11g 0.259 -0.666 -0.556 -0.108 
12e -0.176 -1.032 -1.008 -1.243 
12h -0.755 -2.228 -2.201 -2.528 
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12i -0.477 -1.527 -1.43 -1.769 
12j -1.278 -2.766 -2.94 -3.365 
18a 0.309 -1.183 -1.295 -1.894 
18b -1.82 -3.530 -3.917 -3.604 
20c 0.886 -0.559 -0.570 -0.776 
21c 0.283 0.0328 0.0414 0.335 

19f (r) 0.124 -0.562 -0.602 -0.418 
12g -1.397 -1.221 -1.12 -1.382 

11d (s) 0.619 0.222 0.295 0.104 
 
 
 

 
Fig. 1: Actual vs. predicted activity for the training  

set of compounds derived from MLR analysis 
 

 
Fig. 2: Actual vs. predicted activity for the test set of  

compounds derived from MLR analysis 
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Fig. 3: Actual vs. predicted activity for the training  

set of compounds derived from PLS analysis 
 
 
 
 

 
Fig. 4: Actual vs. predicted activity for the test set of  

compounds derived from PLS analysis 
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Fig. 5: Actual vs. predicted activity for the training set of  

compounds derived from FFNN analysis 
 
 

 
Fig. 6: Actual vs. predicted activity for the test set of  

compounds derived from FFNN analysis 
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Fig. 7: Dependency plot between biological activity and Dipole Moment Z  

Component (whole molecule) used to built the final model  
 
 
 

 
 

Fig. 8: Dependency plot between biological activity and Total Lipole  
(whole molecule) used to built the final model 
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Fig. 9: Dependency plot between biological activity and Number  

of H-bond Acceptors (whole molecule) used to built the final model 
 
 
 

 
Fig. 10: Dependency plot between biological activity and VAMP  
Polarization XY (whole molecule) used to built the final model 

 
 

CONCLUSION 
The MLR, PLS and FFNN were employed to 
study the iNOS inhibitory activity of 2-Imidazol-1-
ylpyridine derivatives. Highly predictive QSAR 
models were obtained using the MLR, PLS and 
FFNN. All the models were validated using 
external test set of 16 compounds. All three 

different statistical approaches (MLR, PLS and 
FFNN) generated nearly the same results for 
each QSAR model and allow us to estimate 
additionally the quality of prediction. The findings 
of present study will certainly aid in the design of 
more potent iNOS inhibitors with improved 
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activity and reduced mechanism based side 
effects of traditional iNOS inhibitors. 
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