INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Available online at www.ijrpc.com

Research Article

ADSORPTION OF MALACHITE GREEN BY ACTIVATED *EUPATORIUM ODORATUM* CARBON: KINETIC AND THERMODYNAMIC STUDIES

C. Pragathiswaran¹*, B. Mahin Abbubakkar¹, N. Anantha Krishnan²,

P. Govindhan¹ and C.Usharani¹

¹Department of Chemistry, Periyar E.V.R College (Autonomous), Trichy-23 Tamil Nadu, India. ²Department of Chemistry,Saranathan College of Engineering, Trichy, Tamil Nadu, India.

ABSTRACT

Kinetics and thermodynamic studies were carried out on the adsorption of aqueous Malachite Green dye solution by activated carbon prepared from the leaves of *Eupatorium Odoratum*plant. In the optimum pH range of 5 to 6, the adsorption reached equilibrium after 60 minutes. Adsorption rate constants were determined by pseudo first order, pseudo second order kinetic studies and intra particle diffusion studies. Thermodynamic parameters such as $\Delta G_A A H$ and ΔS were calculated. The studies indicate that the activated carbon prepared from *Eupatorium Odoratum* is a suitable adsorbent for the adsorption of dyes like malachite green from aqueous solutions.

Keywords: Eupatorium Odoratum, Kinetics, Thermodynamics.

1. INTRODUCTION

Malachite green is a basic and cationic dye. It has been widely used for dyeing leather, silk, wool etc. and as in distilleries. It is also used as fungicide and as antiseptic to control fish parasites It is also toxic to microorganisms. But it has been found showing carcinogenic, genotoxic, mutagenic and teratogenic properties due to the presence of nitrogen. It also retards photosynthetic activity, inhibits the growth of aquatic biota by reducing the sunlight penetration, decreases gas solubility and consumes DO^{1,2}. Due to its inert properties, it is difficult to biodegrade or to remove malachite green from aqueous solutions³.

Adsorption technique is one of the most effective processes of advanced waste water treatment and it could be expected to be promising for a wide range of compounds, than any of the other processes².

In the present work, the leaves of Eupatorium Odoratum (common name: Christmas bush), which is abundant and cheap plant was used to prepare of activated carbon. The plant belongs to Asteraceae family and it is a shrub plant and it grows mostly in every part of Tamilnadu, India.

2. EXPERIMENTAL

2.1. MATERIALS AND METHODS

2.1.1. Preparation of the activated carbon

In the present study, Eupatorium odoratum leaves were washed thoroughly bydouble distilled water to remove the dust and other impurities, dried in shade, then in hot air oven at 60° C, made into fine powder and used as precursor. The activated carbon was prepared by chemical activation method using conc. H_2SO_4 . In this process, the dried leaves were impregnated with conc. H_2SO_4 (1:1) for 24 hours, filtered, washed repeatedly with deionized water and then heated at 500° C for 5 hours. After activation, the carbon was sieved for uniform particle size and used for adsorption⁴.

2.1.2. Preparation of the dye solution

The characteristics of Malachite Green dye is given in the Table – 1. The dye used for the present study was purchased from Ranbaxy, Mumbai and used as such. The stock solution of 1000 ppm was prepared by dissolving 1000 mg of dye in 1L of deionized water. Other concentrations (100 ppm to 200 ppm) were prepared from the stock solution by appropriate dilution with double distilled water. The pH of the solutions was adjusted to desired values with 0.1M HCl or 0.1M NaOH⁵.

Colour Index name	Basic Green 4 (BG 4)		
Colour Index number	42000		
Molecular Formula	C ₂₃ H ₂₅ N ₂ Cl		
Molecular weight	365		
Dye content, (%)	90		
λ max, (nm)	618		

Table 1: Characteristics of Malachite Green

2.1.3 Batch adsorption studies

Adsorption studies were done for 60 minutes (time to reach equilibrium stage),theq_t was determined for every 10 minutes. In these experiments, the adsorbent dosage taken was140 mg and dye concentration was 120 ppm. The dye concentration in supernatant solution was determined at characteristic wavelength of MG ($\lambda_{max} = 617$ nm) by double beam UV–visible spectrophotometer (Systronics, 2202). For kinetic and thermodynamic studies, dye solutions of different concentrations (100 ppm to 200 ppm) were shaken with the known amount of adsorbent (0.14 g) at 303,313, 323 and 333K till the equilibrium was reached. Then the residual MG concentration was determined¹².

3. Results and Discussion

3.1. Adsorption Kinetic Studies

The adsorption kinetics is one of the important factors to define the efficiency of the adsorption¹⁰. In order to understand the process of adsorption, three kineticmodels (i)Lagergren's pseudo-first order,(ii) Ho's pseudo-second order model and (iii) Weberand Morris intraparticle diffusion model were applied analyse the experimental data.

3.1.1. Pseudo First order kinetic model

The first order rate expression of Lagergren based on solid capacity is generally expressed as $dq_t/d_t = k_1(q_e - q_t)$

whereq_t is the quantity of dye adsorbed at time t(mg/g); qe is the adsorption capacity at equilibrium (mg/g); k_1 is the pseudo first order rate constant (min⁻¹); and t is the contact time (min). The above equation on integration with the initial conditions qt = 0 as t \rightarrow 0 gives

$\log (qe - qt) = \log qe - k_1 t / 2.303$

The values of k_1 and regression coefficient R^2 were determined from the plot of log (qe – qt) against t (Fig.1) and given in the Table 2.

Temp.(⁰C)	C₀ (ppm)	q _e (exp)(mg/g)	q₀(calc.)(mg/g)	K₁(min⁻¹)	R ²
30	100	45.33	29.41	6.227 x 10 ⁻²	0.82684
	120	48.42	32.55	5.7759 x 10 ⁻²	0.85691
	140	51.41	36.79	6.9021 x 10 ⁻²	0.80303
	160	63.61	42.08	6.8690 x 10 ⁻²	0.86662
	180	72.39	46.65	6.2530 x 10 ⁻²	0.83611
	200	78.04	50.31	6.3217 x 10 ⁻²	0.85184
	100	48.75	29.76	6.9067 x 10 ⁻²	0.79904
	120	49.36	35.03	5.6562 x 10 ⁻²	0.8911
40	140	55.46	40.57	5.4305 x 10 ⁻²	0.9044
40	160	66.97	44.16	6.5059 x 10 ⁻²	0.86595
	180	80.85	48.36	7.2038 x 10 ⁻²	0.8367
	200	89.17	52.80	7.3120 x 10 ⁻²	0.8432
	100	43.24	30.81	6.1260 x 10 ⁻²	0.89025
	120	60.14	36.26	7.2544 x 10 ⁻²	0.83435
50	140	54.10	41.51	5.3959 x 10 ⁻²	0.9128
50	160	61.07	46.23	5.6930 x 10 ⁻²	0.90523
	180	72.36	50.63	6.2573 x 10 ⁻²	0.9089
	200	82.59	54.66	6.6579 x 10 ⁻²	0.87169
60	100	43.81	31.16	6.9228 x 10 ⁻²	0.89523
	120	52.62	36.67	6.6465 x 10 ⁻²	0.88783
	140	60.17	41.98	6.6372 x 10 ⁻²	0.88822
	160	64.27	47.27	6.9228 x 10 ⁻²	0.91267
	180	86.16	52.34	7.4663 x 10 ⁻²	0.85946
	200	87.26	58.39	6.1352 x 10 ⁻²	0.88093

Table 2:	Rate constants of pseudo - first order kinetic a	t
differ	nt temperatures and different concentrations	

3.1.2. Pseudo Second order kinetic model

The pseudo second order rate equation is given by (10)

 $t/q_t = 1/k_2 q_e^2 + t/q_e$

where k_2 is the rate constant of pseudo second-orderadsorption (g (mg min)⁻¹). The q_e and k_2 values were calculated from slope and intercept of the t/q_tvs. t plots (Fig.5), respectively and shown in the Table – 3.

Fig. 2: Pseudo – second order plots for the adsorption of MG dye onto EOC at various temperatures

Temp.(^⁰ C)	C₀ (ppm)	q _e (exp)(mg/g)	q _e (calc.)(mg/g)	k ₂ (g/mg min)	R ²
30	100	23.86	29.41	2.7474 x10 ⁻³	0.83866
	120	25.51	32.55	2.7484 x10 ⁻³	0.85640
	140	27.55	36.79	2.7191 x10 ⁻³	0.86833
	160	29.77	42.08	3.0846 x10 ⁻³	0.9107
	180	32.26	46.65	2.9826 x10 ⁻³	0.9133
	200	33.45	50.31	3.1894 x10 ⁻³	0.9694
	100	22.33	29.76	4.5068 x10 ⁻³	0.91079
	120	23.90	35.03	4.6804 x10- ³	0.92478
40	140	25.67	40.57	5.8331 x10 ⁻³	0.95161
40	160	26.90	44.16	9.1607 x10 ⁻³	0.9684
	180	28.61	48.36	1.4669 x10 ⁻²	0.95665
	200	32.07	52.80	1.4082 x10 ⁻²	0.9495
	100	30.80	30.81	2.0909 x10 ⁻³	0.87236
	120	32.22	36.26	2.0746 x10 ⁻³	0.86999
50	140	35.09	41.51	2.0995 x10 ⁻³	0.85795
50	160	35.46	46.23	2.5257 x10 ⁻³	0.90573
	180	40.95	50.63	1.9791 x10 ⁻³	0.88433
	200	44.35	54.66	2.0773 x10 ⁻³	0.89756
	100	36.06	31.16	1.8960 x10 ⁻³	0.92242
60	120	39.98	36.67	1.9133 x10 ⁻³	0.83921
	140	42.48	41.98	2.0625 x10 ⁻³	0.88668
	160	44.17	47.27	2.2854 x10 ⁻³	0.91458
	180	48.15	52.34	2.5013 x10 ⁻³	0.94408
	200	53.68	58.39	2.5323 x10 ⁻³	0.94142

Table 3: Rate constants of pseudo – second order kinetic at different temperatures and different concentrations

It can be said that based on R^2 values shown in the above two tables (Table -2 & Table -3) the pseudo second order plots shows a better fit than pseudo first order kinetic model. So the adsorption process can be more satisfactorily explained by pseudo second order. Also when the calculated q_e values are compared with the experimental q_e values, the calculated qe values for pseudo second order are much closer to the experimental values. These facts suggest that the pseudo-second order mechanism is predominant and that chemisorption might be the rate – limiting step that controls the adsorption process. Thus the rate of adsorption of MG on EOC depends on both availability of the adsorption sites and the concentration of adsorbate in the bulk solution⁹.

3.1.3. Intra particle diffusion

Weber and Morris model is a widely used intra particle diffusion model to predict the rate determining step. The equation for the model is

$$\mathbf{q}_{\mathrm{t}} = \mathbf{k}_{\mathrm{id}} \mathbf{t}^{1/2} + \mathbf{C}_{\mathrm{i}}$$

where q_t is the amount of adsorbed MG ion at the time t, $t^{1/2}$ is the square root of time, C_i is the intercept. The intercept value represents the thickness of the boundary layer^{7,8}. The larger the intercept value, the greater the contribution of surface sorption in the rate controlling step. The plots of q_t against $t^{1/2}$ at different C_0 of MG dye (Fig. 3) indicates that the adsorption process took place in two steps – step one is external surface adsorption or instantaneous adsorption (sharp rise) and the second step is the gradual adsorption stage, where intra particle diffusion is the rate determining. In the first step, the rate of dye removal is higher in the beginning due instantaneous availability of large surface areas and active adsorption sites. In this case, since the plot is not linear and does not pass through origin, the intra particle diffusion was not the only rate controlling step.

of MG dye on EOC at various temperatures

3.2. Thermodynamic parameters

Thermodynamic parameters like ΔG^0 , ΔH^0 and ΔS^0 are determined for the adsorption process using the following equations¹⁰

$$\label{eq:G0} \begin{split} & \Delta G^{0} = - \; RT \; In \; K_{d} \\ InK_{d} = (\; \Delta S^{0} \, / \, R) - (\Delta H^{0} / \; RT) \; (vant'Hoff \; equation) \end{split}$$

where $K_d = qe/Ce$, R is the ideal gas constant (8.314 KJ mol⁻¹ K⁻¹) and T is the temperature in Kelvin scale. The enthalpy change (Δ H [-(Δ H= R x slope x 2.033] and the entropy change (Δ S) [Δ S = R x intercept x 2.303] are calculated from the graph of lnK_dagainst 1/T. (Fig.4) The calculated values of Δ G⁰, Δ H⁰ and Δ S⁰ are showed in the Table. 4. The negative values for Δ G shows that the adsorption process is spontaneous and the degree of spontaneity increases with temperature, the adsorption is more favourable at higher temperatures. The complete adsorption process is endothermic. (Δ H is positive) This result also suggests that adsorption capacity of EOC for the dye increases with increasing temperature. The Δ S⁰values were also positive. This is due to the increase in randomness of adsorbate molecules at the solid surface than in bulk solution⁹.

Conc. (ppm)	тк	Δ G (KJ/mol)	∆ S (KJ mol ⁻¹ K ⁻¹)	∆ H (KJ/mol)	
100	303	- 1279.7241			
	313	- 1509. 7258			
	323	- 2170.5087	64.4619	18.8420	
	333	- 2473.9980			
	303	- 303.8676			
120	313	- 1219.9637	50 6114	17.6223	
120	323	- 1812.9525	59.0114		
	333	- 2078.2892			
	303	- 12.9675			
140	313	- 116.1385	E0 1E0 1	17.7238	
	323	- 1497.1498	59.1504		
	333	- 1732.8504			
	303	- 40.0039			
160	313	- 505.7539	50 5045	15 2027	
	323	- 1112.4743	50.5045	15.3027	
	333	- 1485.6432			
180	303	- 78.1876		14.1962	
	313	- 210.6265	46 2109		
	323	- 754.3988	40.2100		
	333	- 1239.4689			
200	303	-5.3219			
	313	- 31.2367			
200	323	- 407.7437	43 2395	13 5252	
	333	- 929.1701	-0.2000	10.0202	

Table 4: Thermodynamic parameters at various concentrations

MG dye on EOC at various concentrations

CONCLUSION

From the present study it may be concluded that the adsorption of Malachite green dye on Eupatorium odoratum carbon follows the pseudo-second order kinetic model, such that the rate limiting step was governed by chemisorption; the thermodynamic parameters of change inenthalpy (Δ H) is positive, showsthat the adsorptionprocess was endothermic. The negative valueof the Gibbs free energy change (Δ G) indicates that at various temperatures the adsorption process was spontaneous and the positive value of Δ Sshows the increasing randomnessbetween the solid–solution interface during adsorption.

From these evidences it could concluded that the leaves of Eupatorium Odoratum can be used as precursor for preparing activated carbon for the effective adsorption of dyes such as Malachite Green from waste water.

REFERENCES

- 1. Malik R, Ramteke DS and Wate SR. Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste Management. 2007;27:1129–1138.
- Mustafa T Yagub, Tushar KantiSen, Sharmeen Afroe and Ang HM. Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science. 2014;209: 172–184.
- 3. Yunus Onal. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot, Journal of Hazardous Materials B. 2006;137:1719–1728.
- 4. WanNgah WS, Teong LC and Hanafiah MAKM. Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydrate Polymers. 2011;83:1446–1456.
- Ozgul Gercel, Adnan Ozcan, Safa Ozcan A and FerdiGercel H. Preparation of activated carbon from a renewable bio – plant of Euphorbia rigidaby H₂SO₄ activation and its adsorption behaviour in aqueous solutions, Applied Surface Science. 2007;253:4843–4852.
- 6. Gupta VK and Suhas. Application of low cost adsorbents for dye removal A review, Journal of Environmental Management. 2009;90:2313–2342.
- Mohd Azmier Ahmad, Norhidayah Ahmad and Olugbenga Solomon Bello. Adsorption Kinetic Studies for the Removal of SyntheticDye Using Durian Seed Activated Carbon. Journal of Dispersion Science and Technology. 2015;36:670–684.
- Mohamad Amran Mohd Salleh, Dalia Khalid Mahmoud, Wan Azlina Wan Abdul Karim and Aznildris. Cationic and anionic dye adsorption by agricultural solid waste. A comprehensive review, Desalination. 2011;280:1–13.
- Pragathiswaran C, Sibi S and Sivanesan P. Comparison studies of various adsorptionisotherms for aloe Vera adsorbent. International Journal of Research in Pharmacy and Chemistry. 2013; 3(4):886-889.
- Pragathiswaran C, Anantha Krishnan N, Mahin Abbubakkar B, Govindhan P and Syed Abuthahir KA. Kinetics and Thermodynamics Study of Malachite Green Dye onto Activated Carbon obtained from the Gloriosa Superba Stem. International Journal of Research in Pharmacy and Chemistry. 2016;6(1):62-67.
- 11. Pragathiswaran C, Anantha Krishnan N, Mahin Abbubakkar B, Govindhan P and Syed Abuthahir KA. Adsorption of Malachite Green Dye onto Activated Carbon obtained from the GloriosaSuperba Stem. International Journal of Research in Pharmacy and Chemistry. 2016;6(1): 57-61.
- 12. Pragathiswaran C, Sibi S and Sivanesan P. Removal of copper (II) ions from aqueous solution using eihhorneacrassipies: characteristic and morphology study. International Journal of Research in Pharmacy and Chemistry. 2013;3(4):881–885.
- Kumar M, Tamilarasan R and Sivakumar V. Adsorption of Victoria blue bycarbon/Ba/alginate beads: Kinetics, thermodynamics and isotherm studies, Carbohydrate Polymers. 2013;98:505– 513.
- Pragathiswaran C, Anantha Krishnan N, Mahin Abbubakkar B, Govindhan P and Syed Abuthahir KA. Adsorptive Removal of Dye From Aqueous Solution Using Activated Carbon From The Gloriosasuperba Stem. International Journal of Research in Pharmacy and Chemistry. 2016; 6(1):104-109.
- 15. Pragathiswaran C, Anantha Krishnan N, Mahin Abbubakkar B, Govindhan P and Syed Abuthahir KA. Adsorption of Methylene Blue Dye using Activated Carbon from the Gloriosa Superba Stem. International Journal of Research in Pharmacy and Chemistry. 2016;6(1):95-103.